Dynamic Event-Triggering Resilient Coordination for Time-Varying Heterogeneous Networks

Published in IEEE Transactions on Signal and Information Processing over Networks, 2025

This study addresses the resilient coordination problem for heterogeneous multi-agent systems (MASs) consisting of first-order and second-order agents in time-invariant and time-varying networks. An internal dynamic variable is introduced to flexibly adjust the triggering threshold and facilitate the dynamic event-triggering condition (DETC). Under adversarial attacks, a novel resilient consensus strategy called heterogeneous dynamic event-triggering mean-subsequence-reduced (HDE-MSR) algorithm is further developed, which ensures that the positions of all healthy agents achieve consensus on the identical value and the velocities of all healthy second-order agents asymptotically approach zero despite the influence of faulty agents. Moreover, the resilient consensus in time-varying networks is further guaranteed by the introduction of jointly robust graphs. Finally, three case studies are provided to validate the effectiveness and superior performance of the HDE-MSR algorithm.