The 43rd Chinese Control Conference (CCC 2024)

Dynamic Event-Triggering Resilient Consensus for Heterogeneous Multi-Agent Systems (MASs) Against Malicious Attacks

Authors: Zirui Liao, Shaoping Wang, Jian Shi, Yuwei Zhang, Rentong Chen, and Zhiyong Sun

Institution: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

- > 1. Research Background and Significance
- > 2. Literature Review
- > 3. Methodology
- > 4. Numerical Example
- > 5. Conclusion and Future Work

1. Research Background and Significance

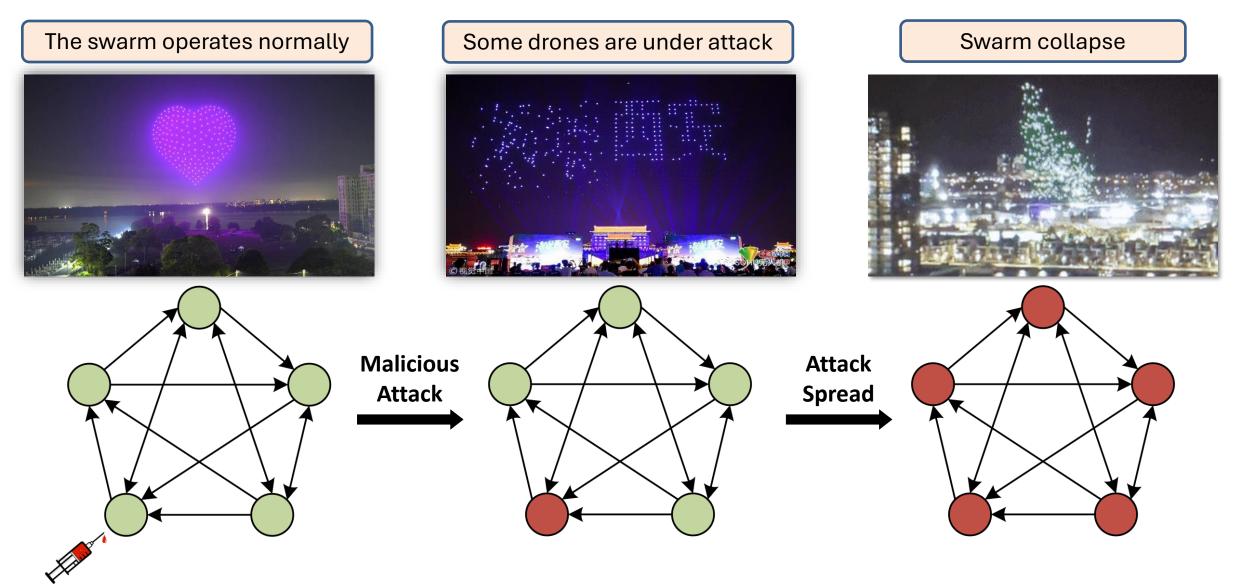
Research Background

Swarm Performance

Cooperative Detection

Application of MASs in Various Fields

Agriculture

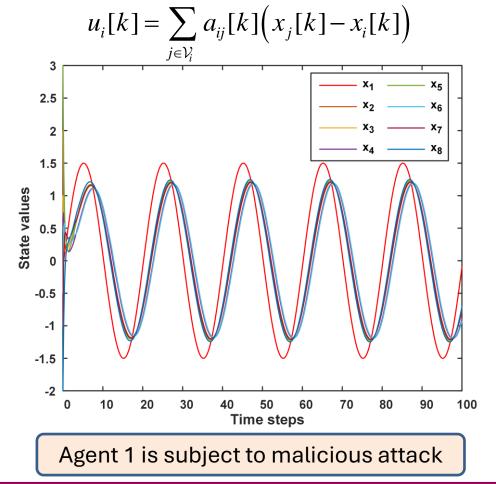


Target Tracking

1. Research Background and Significance

> Research Significance

1. Research Background and Significance


> Research Significance

Consider a single-integrator MAS modelled by

a single-integrator mas mod

A consensus-seeking protocol^[1] is introduced as

Motivating Question: How to address resilient consensus problem when the MAS is under attack?

London: Springer, 2011.

- > 1. Research Background and Significance
- > 2. Literature Review
- > 3. Methodology
- > 4. Numerical Example
- > 5. Conclusion and Future Work

2. Literature Review

> Review of Resilient Control Methods for MASs

Attack Detection and Isolation Method ^[2,3]	Attack Tolerant Method ^[4,5]		
Detecting and isolating malicious agents	Deleting malicious state values		
Agents are equipped with a bank of observers	More lightweight with less computational complexity		
Massive data processing	Less data processing		
High network connectivity required	Less prior information required		
Unknown input observers	Mean Subsequent reduced (MSR) algorithm		

- [2] I. Shames, A. M. Teixeira, H. Sandberg, and K. H. Johansson, "Distributed fault detection for interconnected second-order systems," *Automatica*, vol. 47, no. 12, pp. 2757–2764, 2011.
- [3] Z. Tang, M. Kuijper, M. S. Chong, I. Mareels, and C. Leckie, "Linear system security-detection and correction of adversarial sensor attacks in the noise-free case," *Automatica*, vol. 101, pp. 53–59, 2019.
- [4] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, "Resilient asymptotic consensus in robust networks," *IEEE Journal on Selected Areas in Communications*, vol. 31, no. 4, pp. 766–781, 2013.
- [5] Y. Zhai, Z. Liu, M. Ge, G. Wen, X. Yu, and Y. Qin, "Trusted-region subsequence reduction for designing resilient consensus algorithms," *IEEE Transactions on Network Science and Engineering*, vol. 8, no. 1, pp. 259–268, 2020.

2. Literature Review

Existing Resilient Control Methods based on MSR

Literature	Year	System Model	Communication Mode	Objective	
[4]	2013	Single-integrator MASs	Time-triggered	Exact resilient consensus	
[6]	2017	Double-integrator MASs	Time-triggered	Exact resilient consensus	
[7]	2022	General linear MASs	Time-triggered	Exact resilient consensus	
[8]	2020	Single-integrator MASs	Static event-triggered	Bounded resilient consensus	
[9]	2021	Single-integrator MASs	Static event-triggered	Bounded resilient consensus	
Our research	2024	Heterogeneous MASs	Dynamic event-triggered	Exact resilient consensus	

- [4] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, "Resilient asymptotic consensus in robust networks," *IEEE Journal on Selected Areas in Communications*, vol. 31, no. 4, pp. 766–781, 2013.
- [6] S. M. Dibaji and H. Ishii, "Resilient consensus of second-order agent networks: Asynchronous update rules with delays," *Automatica*, vol. 81, pp. 123–132, 2017.
- [7] Y. Bai and J. Wang, "Resilient consensus of continuous-time linear networked systems," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 69, no. 8, pp. 3500–3504, 2022.
- [8] Y. Wang and H. Ishii, "Resilient consensus through event-based communication," *IEEE Transactions on Control of Network Systems*, vol. 7, no. 1, pp. 471–482, 2020.
- [9] N. Wang, and Y. Liu, "Resilient consensus of second-order multi-agent systems subject to malicious attacks," in *Proc. of the 2021 Chinese Intelligent Systems Conference*. Springer, 2021, pp. 10-21.

- > 1. Research Background and Significance
- > 2. Literature Review
- > 3. Methodology
- > 4. Numerical Example
- > 5. Conclusion and Future Work

Dynamic Modelling for Heterogeneous MASs

- Consider a heterogeneous MASs consisting of first-order and second-order agents.
- The discrete system dynamics are mathematically expressed as follows:

Dynamic equations:

$$\dot{x}_{i}(t) = u_{i}(t), \quad i \in \mathcal{N}_{1}$$

$$\begin{cases} \dot{x}_{i}(t) = v_{i}(t) \\ \dot{v}_{i}(t) = u_{i}(t) \end{cases}, \quad i \in \mathcal{N}_{2}$$

$$x_i \big[(k+1)T \big] = x_i \big[kT \big] + Tu_i \big[kT \big], \qquad i \in \mathcal{N}_1$$
 Sampling Period T
$$\begin{cases} x_i \big[(k+1)T \big] = x_i \big[kT \big] + Tv_i \big[kT \big] + \frac{T^2}{2} u_i \big[kT \big], & i \in \mathcal{N}_2 \\ v_i \big[(k+1)T \big] = v_i \big[kT \big] + Tu_i \big[kT \big] \end{cases}$$
 Discretization

Replace kT with k

 $x_i(t) \in \mathbb{R}$: Position of agent i at time t

 $v_i(t) \in \mathbb{R}$: Velocity of agent i at time t

 $u_i(t) \in \mathbb{R}$: Input of agent *i* at time *t*

$$x_{i}[k+1] = x_{i}[k] + Tu_{i}[k], i \in \mathcal{N}_{1}$$

$$\begin{cases} x_{i}[k+1] = x_{i}[k] + Tv_{i}[k] + \frac{T^{2}}{2}u_{i}[k], & i \in \mathcal{N}_{2} \\ v_{i}[k+1] = v_{i}[k] + Tu_{i}[k] \end{cases}$$

> Problem Statement

The MAS is said to achieve **exact resilient consensus** if the following two conditions hold for any initial state values of agents:

- **Resilience:** For each normal agent, it holds $x_i[k] \in S$, $\forall k \in \mathbb{Z}_+$, where S denotes the safety interval.
- **Exact Consensus:** For each normal agent, it holds $\lim_{k\to\infty} \left|x_i[k] x_j[k]\right| = 0, \quad \forall i,j\in\mathcal{N}.$ For each normal second-order agent, it holds $\lim_{k\to\infty} v_l[k] = 0, \ \forall l\in\mathcal{N}_2.$

Research Question: How to design control protocols to protect the heterogeneous MAS from malicious attacks and achieve resilient consensus?

Control Protocol Design

- For normal first-order agents, the control protocol relies on the **difference** between neighbor's positions and their own positions.
- For normal first-order agents, the control protocol considers both the difference and their own velocities.

Control protocol for heterogeneous MAS

$$u_{i}[k] = \begin{cases} \gamma \sum_{j \in \mathcal{R}_{i}[k]} a_{ij}[k] (x_{j}[k] - x_{i}[k]), & i \in \mathcal{N}_{1} \\ \alpha \sum_{j \in \mathcal{R}_{i}[k]} a_{ij}[k] (x_{j}[k] - x_{i}[k]) - \beta v_{i}[k], & i \in \mathcal{N}_{2} \end{cases}$$

Compared with the control protocol in [1]

$$u_i[k] = \sum_{j \in \mathcal{V}_i} a_{ij}[k] \left(x_j[k] - x_i[k] \right) \qquad \qquad u_i[k] = \underbrace{\gamma}_{j \in \mathcal{R}_i[k]} a_{ij}[k] \left(x_j[k] - x_i[k] \right)$$

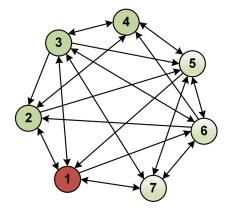
Control gain

regulate the system state more accurately

Neighbor set

Do not use all neighbor positions for update

> MSR Algorithm


1. Sorting

2.Deleting

3. Updating

> Example:

$$[x_1[0], \dots, x_7[0]] = [10, 8, 6, 7, 4, -5, 6]$$

$$[v_5[0], v_6[0], v_7[0]] = [3, -2, -1], f = 2$$

Agent 2:
$$x_2[0] = 8$$
, $x_j[0] = [10, 6, 7, -5]$

$$S = [-5, 6, 7, 8, 10]^{\mathrm{T}}$$

$$S_{del} = [-5, 6, 7, 8, 10]^{T}, \quad \mathcal{R}_{i} [0] = \{4\}$$

3. Updating

$$x_{i}[1] = x_{i}[0] + \sum_{j \in \mathcal{R}_{i}[0]} a_{ij}[0] \left(x_{j}[0] - x_{i}[0]\right)$$

> MSR Algorithm

> Event-based MSR (E-MSR) Algorithm^[8]

2. Deleting

Require $x_{i}[k]$ at each time step

1. Sorting

2. Deleting

3. Updating

Heavy communication load

3. Updating

4.Checking

Static Event-Triggered Mechanism^[8]

• The control protocol is also modified as

• The control protocol is also modified as
$$u_i[k] = \begin{cases} \gamma \sum_{j \in \mathcal{R}_i[k]} a_{ij}[k] \Big(\hat{x}_j[k] - x_i[k]\Big), & i \in \mathcal{N}_1 \\ \alpha \sum_{j \in \mathcal{R}_i[k]} a_{ij}[k] \Big(\hat{x}_j[k] - x_i[k]\Big) - \beta v_i[k], & i \in \mathcal{N}_2 \end{cases}$$
Auxiliary variable depends on

The update of auxiliary variable depends on

$$\hat{x}_i[k+1] = \begin{cases} x_i[k+1], & \text{if } f_i[k] > 0, \\ \hat{x}_i[k], & \text{otherwise.} \end{cases}$$

• The static event-triggered function (SETF) is designed as

$$f_i[k] = \underbrace{\left| x_i[k+1] - \hat{x}_i[k] \right|}_{\text{Error term } \left| e_i[k] \right|} - \underbrace{\left(c_0 + c_1 e^{-\alpha k} \right)}_{\text{Threshold}}$$

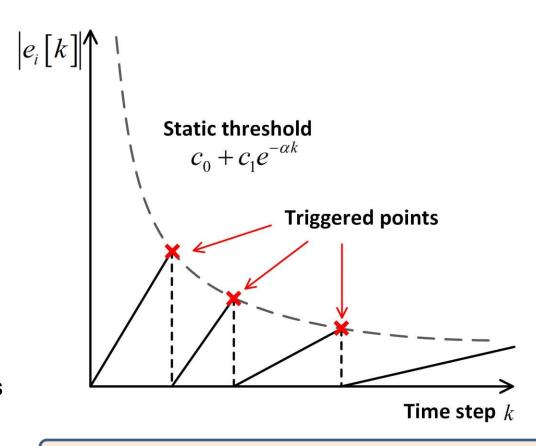


Illustration of the static event-triggered mechanism.

E-MSR Algorithm

1. Sorting

2. Deleting

3. Updating

4.Checking

Step 4: Agent i checks whether SETF triggers or not and sets $\hat{x}_i[k+1]$ as

$$\hat{x}_i[k+1] = \begin{cases} x_i[k+1], & \text{if SETF triggers,} \\ \hat{x}_i[k], & \text{otherwise.} \end{cases}$$

Shortcomings:

• Only bounded resilient consensus can be achieved due to the existence of constant term c_0 , i.e.,

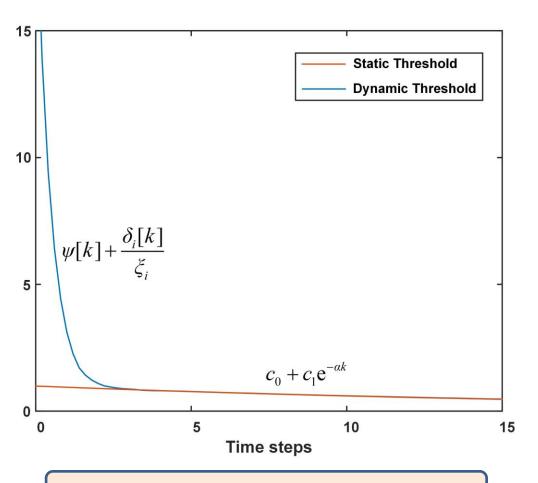
$$\lim_{k\to\infty} \left| x_i[k] - x_j[k] \right| \le c, \quad \forall k \in \mathbb{Z}_{\ge 0}.$$

• The threshold cannot dynamically adjust as the error term changes.

Dynamic Event-Triggering Mechanism^[10]

• The control protocol is also modified as

$$u_{i}[k] = \begin{cases} \gamma \sum_{j \in \mathcal{R}_{i}[k]} a_{ij}[k] (\hat{x}_{j}[k] - x_{i}[k]), & i \in \mathcal{N}_{1} \\ \alpha \sum_{j \in \mathcal{R}_{i}[k]} a_{ij}[k] (\hat{x}_{j}[k] - x_{i}[k]) - \beta v_{i}[k], & i \in \mathcal{N}_{2} \end{cases}$$


• A dynamic variable $\delta_{i}[k]$ is introduced, whose state update follow

$$\delta_i[k+1] = (1-\theta_i)\delta_i[k] + \eta_i(\psi[k] - |e_i[k]|)$$

Always greater than zero and exponentially converges to zero.

• The dynamic event-triggered function (DETF) is designed as

$$f_{i}[k] = \left| e_{i}[k] \right| - \left(\psi[k] + \frac{\delta_{i}[k]}{\xi_{i}} \right)$$

Comparison of the two triggering thresholds.

Dynamic Event-triggered Mean Subsequence Reduced (DE-MSR) Algorithm^[10]

1. Sorting

2. Deleting

Step 4: Agent i checks whether DETF triggers or not and sets $\hat{x}_i[k+1]$ as

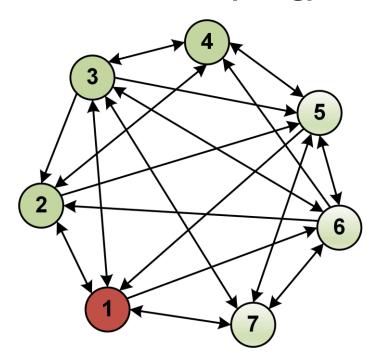
$$\hat{x}_i[k+1] = \begin{cases} x_i[k+1], & \text{if SETF triggers,} \\ \hat{x}_i[k], & \text{otherwise.} \end{cases}$$

3&5. Updating

4.Checking

Step 5: Agent i updates its interval dynamic variable according to

$$\delta_i[k+1] = (1-\theta_i)\delta_i[k] + \eta_i(\psi[k] - |e_i[k]|)$$


- > 1. Research Background and Significance
- > 2. Literature Review
- > 3. Methodology
- > 4. Numerical Example
- > 5. Conclusion and Future Work

4. Numerical Example

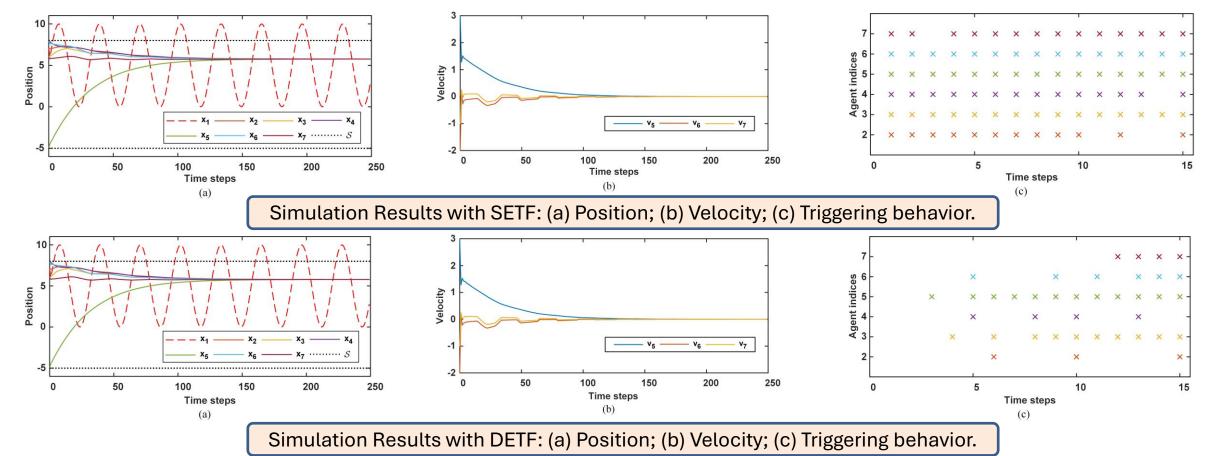
> A Comparative Numerical Example Between SETF and DETF

♦ Communication Topology

♦ Simulation Setting

- Agents 1,2,3,4: first-order; Agents 5,6,7: second-order
- Agent 1 is a **malicious agent**, whose motion follows $x_1[k] = 5 \times \sin(0.2 \times k) + 5$
- Initial state values of all agents are denoted as X[0] = [7,7,6,8,-5,8,6], V[0] = [0,0,0,0,3,-2,-1]
- SETF related parameters: $c_0 = 0.005, \ c_1 = 0.01, \ \alpha = 0.01$
- DETF related parameters:

$$\xi_i = 10, \ \eta_i = 0.6, \ \theta_i = 0.35, \ \delta_i[0] = 15, \ \psi[k] = e^{-\beta k}, \ \beta = 0.01$$


Purpose

- To validate the effectiveness of the proposed DE-MSR algorithm.
- To show the **superiority** of DETF compared with SETF.

4. Numerical Example

Simulation Results

Event-triggering	Event counts (within 250 time steps)					
mechanism	ag.2	ag.3	ag.4	ag.5	ag.6	ag.7
SETF	150	127	149	178	113	102
DETF	140	122	138	174	106	90

- The SETF and DETF show a similar convergence rate.
- The DETF is superior in reducing communication times.

- > 1. Research Background and Significance
- > 2. Literature Review
- > 3. Methodology
- > 4. Numerical Example
- > 5. Conclusion and Future Work

5. Conclusion and Future Work

Conclusion

- Study the resilient consensus problem for **heterogeneous MASs**.
- Propose the **DE-MSR algorithm** to reduce communication overheads.
- Validate the **effectiveness** of the proposed method through numerical simulations.

Prospection

Future work includes:

- MASs with **disturbances** generated from the external environment.
- More **general and complex tasks** (e.g., resilient distributed optimization).

The 43rd Chinese Control Conference (CCC 2024)

Thank you so much for your attention!

Reach out to us: Zirui Liao (by2003110@buaa.edu.cn)

Zhiyong Sun (z.sun@tue.nl)

Full Paper

WeChat

