

Content

- 1. Background
- 2. Problem Formulation
- 3. Methodology
- 4. Case Study
- 5. Conclusion and Future Work

Applications of Multi-UAV

Swarm Performance

Agriculture

Mars Exploration

3

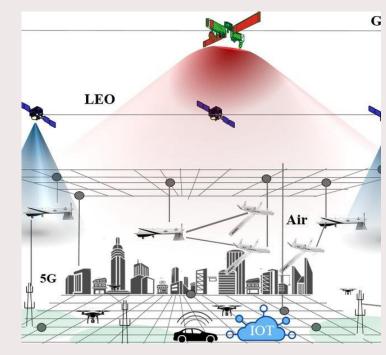
Situational Awareness (SA)

Situational Awareness^[2]

Definition

 Perception of the elements in the environment within a volume of time and space.

Goal

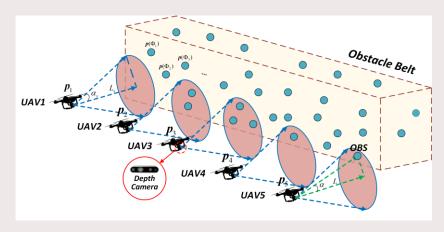

 Support further decision-making and improve efficiency.

Requirement

• The information obtained by all UAVs should be as consistent as possible with the true information.

Current Situation

- Single information source cannot satisfy the demand.
- Disturbance, uncertainty...
- Extend SA to cooperative field.



Situation awareness of multi-agent systems^[3].

^[2] M. R. Endsley, "Toward a theory of situation awareness in dynamic systems," Human factors, vol. 37, no. 1, pp. 32–64, 1995.

^{4 [3]} N. Hosseini, H. Jamal, J. Haque, T. Magesacher, and D. W. Matolak, "UAV command and control, navigation and surveillance: A review of potential 5g and satellite systems," in 2019 IEEE Aerospace Conference. IEEE, 2019, pp. 1–10.

Scenario Assumption

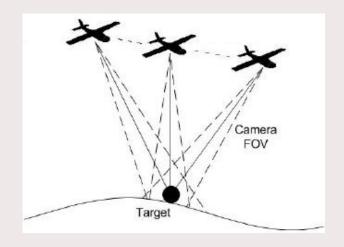
Scenario assumption of multi-UAV system detection.

Challenge 1

 How to incorporate the information detected by each UAV in the system?

Challenge 2

 How to overcome the effects of detection uncertainty and limited capability of airborne sensors?


- A multi-UAV system detects a 3D obstacle belt with distributed obstacles.
- Detection uncertainty occurs during the perception, especially when obstacle deviates.
- Each UAV carries a limited-capability depth camera to detect obstacles within a perception range.

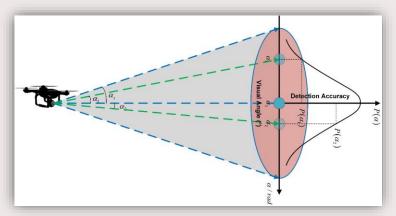
High-Conflict Situation

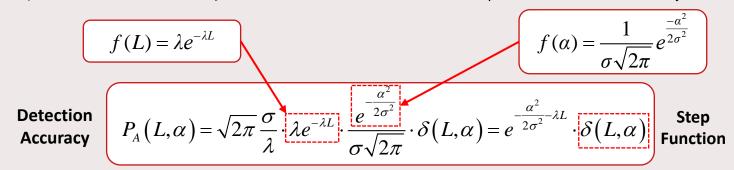
BPA of four common paradoxes.

D 1	Evidence	Propositions				
Paradoxes		A	B^{T}	C	D	E
Complete conflict paradox (1)	m_1	1	0	0	\	\
	m_2	0	1	0	\	\
	m_3	0.8	0.1	0.1	\	\
	m_4	0.8	0.1	0.1	\	\
0 trust paradox (2)	m_1	0.5	0.2	0.3	\	\
	m_2	0.5	0.2	0.3	\	\
	m_3	0	0.9	0.1	\	\
	m_4	0.5	0.2	0.3	\	\
1 trust paradox (3)	m_1	0.9	0.1	0	\	\
	m_2	0	0.1	0.9	\	\
	m_3	0.1	0.15	0.75	\	\
	m_4	0.1	0.15	0.75	\	\
High conflict paradox (4)	m_1	0.7	0.1	0.1	0	0.1
	m_2	0	0.5	0.2	0.1	0.2
	m_3	0.6	0.1	0.15	0	0.15
	m_4	0.55	0.1	0.1	0.15	0.1
	m_5	0.6	0.1	0.2	0	0.1

Traditional D-S evidence theory is unable to deal with high-conflict situations!

Challenge 3


• How to process the contradictory information under high-conflict paradoxes?


Uncertainty Modeling

Relationship between detection accuracy and visual distance.

Relationship between detection accuracy and visual angle.

Framework of D-S Evidence Theory [3]

Discernment Frame

A set Θ consisting of independent, complete, and exclusive elements $\Phi_1, \Phi_2, \dots, \Phi_n$.

Its power set 2° can be expressed as

$$2^{\Theta} = \left\{ \varnothing, \left\{ \Phi_1 \right\}, \left\{ \Phi_2 \right\}, \cdots, \left\{ \Phi_n \right\}, \left\{ \Phi_1 \cup \Phi_2 \right\}, \left\{ \Phi_1 \cup \Phi_3 \right\}, \cdots, \Theta \right\}$$

Basic Probability Assignment

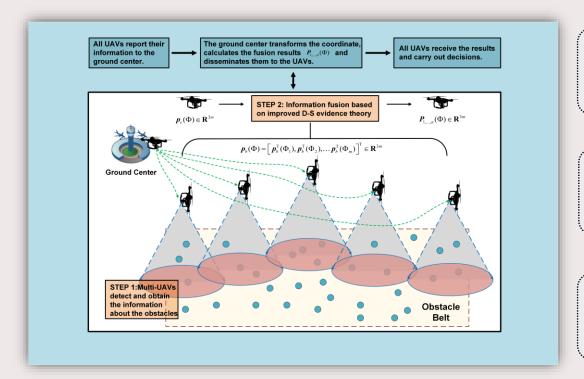
Assume each obstacle Φ_i maps to a function $m(\Phi_i)$ $(m(\Phi_i) \in [0,1])$. If $m(\Phi)$ satisfies

$$m(\varnothing) = 0; m(\Phi) \ge 0; \sum_{\Phi = 2^{\Theta}} m(\Phi) = 1,$$

then m is qualified as a BPA on Θ .

It can deal with uncertainty to some degree.

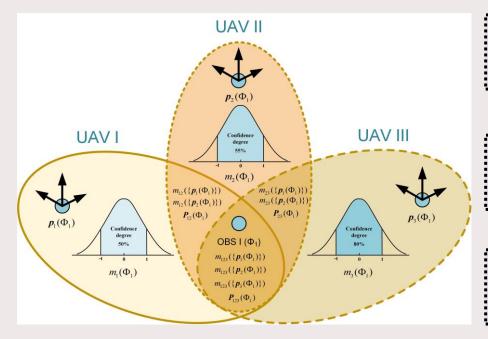
D-S Combination Rule


After determining the discernment frame, multiple independent sets of BPAs can be fused through

$$\begin{cases} \forall \Phi \subset \Theta, \Phi \neq \emptyset, \Phi_1, \Phi_2, \dots, \Phi_n \subset \Theta \\ m(\Phi) = k \sum_{\substack{\Phi_1, \Phi_2, \dots, \Phi_n \subset \Theta \\ \Phi_1 \cap \Phi_2 \cap \dots, \Phi_n = \Phi}} m_1(\Phi_1) m_2(\Phi_2) \dots m_n(\Phi_n) \\ k = \left(1 - \sum_{\substack{\Phi_1, \Phi_2, \dots, \Phi_n \subset \Theta \\ \Phi_1 \cap \Phi_2 \cap \dots, \cap \Phi_n = \emptyset}} m_1(\Phi_1) m_2(\Phi_2) \dots m_n(\Phi_n) \right)^{-1} \end{cases}$$

where k is the conflict coefficient.

Task Flow

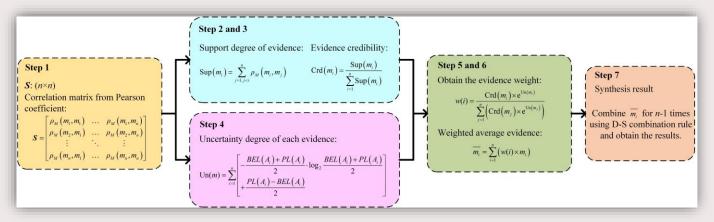

 Step 1: Multi-UAV system detects and obtains the coordinate and accuracy of obstacles.

 Step 2: Coordinate transformation and information fusion based on D-S evidence theory.

• Step 3: All UAVs receive the fusion results and achieve the cooperative situational awareness.

CSA Among Multiple UAVs

 The information fusion among UAV I, II and III on OBS I is taken as the example.


 Each UAV can detect and obtain the position of OBS I with different accuracy.

• The fused position and accuracy of obstacles are calculated.

Information fusion among multiple UAVs.

Method Improvements Towards High-Conflict Situations

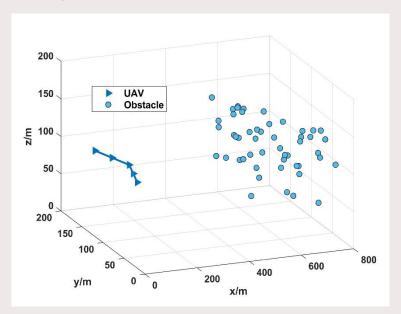
The flow chart of improved evidence combination method.

Improvement 1

 Introduction of Pearson coefficient to measure the correlation.

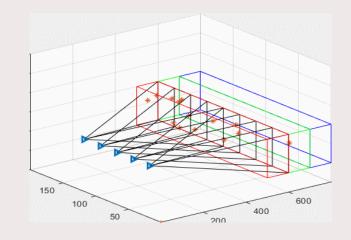
Improvement 2

 Comprehensive consideration of evidence credibility and uncertainty.

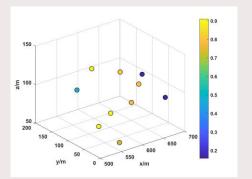

Improvement 3

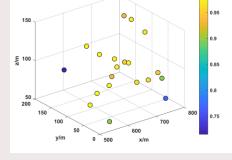
 Weighted average the original evidence to obtain the fusion results.

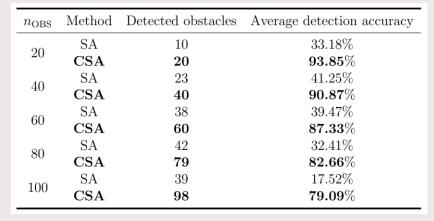
Simulation Under a Fixed Formation

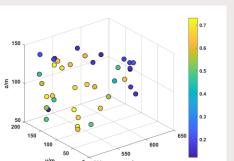

Verify the effectiveness of the CSA method.

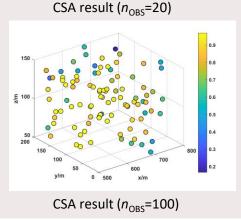
Distribution of UAVs and obstacles under a certain formation shape.


Parameter setting.


Item	Parameter	item	Parameter	
Obstacle space	$300~\mathrm{m} \times 200~\mathrm{m} \times 100~\mathrm{m}$	Δt	1 s	
n_{OBS}	From 20 to 100	λ	0.6	
$n_{ m UAV}$	5	σ	1	
$oldsymbol{v}_i = \left[v_i^x, v_i^y, v_i^z\right]^{\mathrm{T}}$	$[20, 0, 0]^{\mathrm{T}}$ m/s	L_s	$0 \sim 550 \text{ m}$	
Velocity direction	Positive X axis	$ heta_s$	$-45^{\circ} \sim +45^{\circ}$	



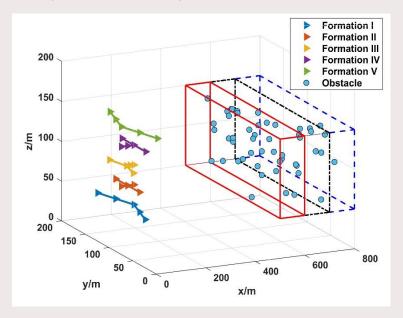

Simulation Under a Fixed Formation

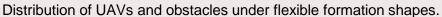


Comparison result between SA and CSA.

SA result (n_{OBS} =100)

SA result (n_{OBS} =20)

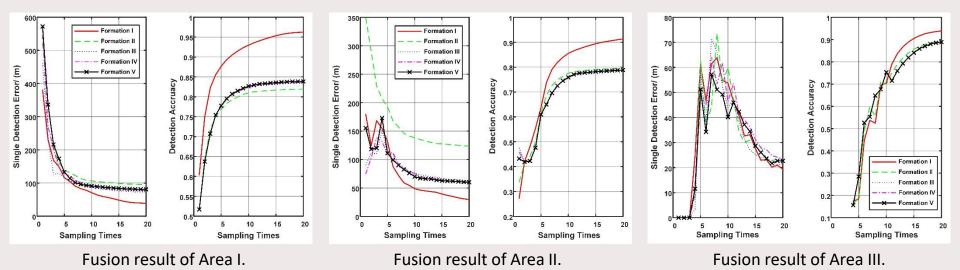



- The number of detected obstacles doubles.
- The average detection accuracy increases by 40%-50%.

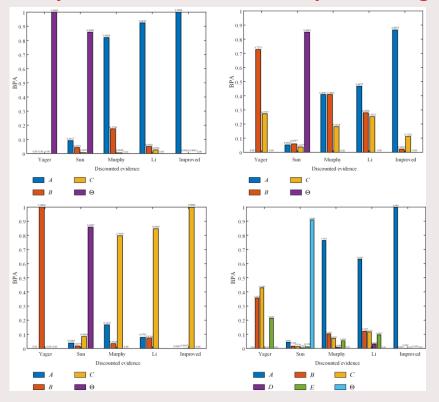


Simulation Under Flexible Formation Shapes

• Verify the scalability of the CSA method.



- Obstacle number is fixed.
- Different formation shapes are applied.


Simulation Under Flexible Formation Shapes

- All formations can complete the detection of the three areas with low error and high accuracy.
- Formation I achieves the optimal detection performance, reaching 96.58% accuracy.

Comparison Between the Improved Algorithm and Existing Methods

Paradoxes	M-411-	Propositions					
	Methods	A	B	C	D	E	F
(1)	Yager	0	0	0	\	\	1
	Sun	0.0917	0.0423	0.0071	\	\	0.8589
	Murphy	0.8204	0.1748	0.0048	\	\	0
	Li	0.9242	0.0502	0.0256	\	\	0
	Improved	0.9998	0.0001	0.0001	\	\	0
(2)	Yager	0	0.7273	0.2727	\	\	0
	Sun	0.0525	0.0597	0.0377	\	\	0.850
	Murphy	0.4091	0.4091	0.1818	\	\	0
	Li	0.4679	0.2800	0.2521	\	\	0
	Improved	0.8655	0.0223	0.1122	\	\	0
(3)	Yager	0	1	0	\	\	0
	Sun	0.0388	0.0179	0.0846	\	\	0.858
	Murphy	0.1676	0.0346	0.7978	\	\	0
	Li	0.0791	0.0743	0.8466	\	\	0
	Improved	0.0001	0.0010	0.9989	\	\	0
(4)	Yager	0	0.3571	0.4286	0	0.2143	0
	Sun	0.0443	0.0163	0.0136	0.0045	0.0118	0.909
	Murphy	0.7637	0.1031	0.0716	0.0080	0.0538	0
	Li	0.6320	0.1227	0.1171	0.0316	0.0967	0
	Improved	0.9991	0.0001	0.0006	0	0.0002	0

Conclusions

- Investigating the cooperative detection problem of multi-UAV systems in 3D space.
- Modeling and characterizing the detection and sensor uncertainties.
- Modifying the traditional D-S evidence theory to treat high-conflict situations.
- Demonstrating the superiority of the CSA method through numerical simulations.

Future Work

- The consideration of the heterogeneous multi-sensor fusion.
- The consideration of further improvement of information fusion method (e.g., Evidential Reasoning, ER).

